Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.765
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1343738, 2024.
Article in English | MEDLINE | ID: mdl-38633754

ABSTRACT

Background: Glycine is an integral component of the human detoxification system as it reacts with potentially toxic exogenous and endogenously produced compounds and metabolites via the glycine conjugation pathway for urinary excretion. Because individuals with obesity have reduced glycine availability, this detoxification pathway may be compromised. However, it should be restored after bariatric surgery because of increased glycine production. Objective: To examine the impact of obesity-associated glycine deficiency on the glycine conjugation pathway. We hypothesize that the synthesis rates of acylglycines from endogenous and exogenous sources are significantly reduced in individuals with obesity but increase after bariatric surgery. Methods: We recruited 21 participants with class III obesity and 21 with healthy weight as controls. At baseline, [1,2-13C2] glycine was infused to study the glycine conjugation pathway by quantifying the synthesis rates of several acylglycines. The same measurements were repeated in participants with obesity six months after bariatric surgery. Data are presented as mean ± standard deviation, and p-value< 0.05 is considered statistically significant. Results: Baseline data of 20 participants with obesity were first compared to controls. Participants with obesity were significantly heavier than controls (mean BMI 40.5 ± 7.1 vs. 20.8 ± 2.1 kg/m2). They had significantly lower plasma glycine concentration (168 ± 30 vs. 209 ± 50 µmol/L) and slower absolute synthesis rates of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Pre- and post-surgery data were available for 16 participants with obesity. Post-surgery BMI decreased from 40.9 ± 7.3 to 31.6 ± 6.0 kg/m2. Plasma glycine concentration increased from 164 ± 26 to 212 ± 38 µmol/L) and was associated with significantly higher rates of excretion of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Benzoic acid (a xenobiotic dicarboxylic acid) is excreted as benzoylglycine; its synthesis rate was significantly slower in participants with obesity but increased after bariatric surgery. Conclusion: Obesity-associated glycine deficiency impairs the human body's ability to eliminate endogenous and exogenous metabolites/compounds via the glycine conjugation pathway. This impairment is ameliorated when glycine supply is restored after bariatric surgery. These findings imply that dietary glycine supplementation could treat obesity-associated metabolic complications due to the accumulation of intramitochondrial toxic metabolites. Clinical trial registration: https://clinicaltrials.gov/study/NCT04660513, identifier NCT04660513.


Subject(s)
Bariatric Surgery , Benzoic Acid , Humans , Benzoic Acid/metabolism , Glycine , Hippurates/metabolism , Obesity , Case-Control Studies
2.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38567815

ABSTRACT

In cattle, lateral asymmetry affects ovarian function and embryonic sex, but the underlying molecular mechanisms remain unknown. The plasma metabolome of recipients serves to predict pregnancy after embryo transfer (ET). Thus, the aim of this study was to investigate whether the plasma metabolome exhibits distinct lateral patterns according to the sex of the fetus carried by the recipient and the active ovary side (AOS), i.e., the right ovary (RO) or the left ovary (LO). We analyzed the plasma of synchronized recipients by 1H+NMR on day 0 (estrus, n = 366) and day 7 (hours prior to ET; n = 367). Thereafter, a subset of samples from recipients that calved female (n = 50) or male (n = 69) was used to test the effects of embryonic sex and laterality on pregnancy establishment. Within the RO, the sex ratio of pregnancies carried was biased toward males. Significant differences (P < 0.05) in metabolite levels were evaluated based on the day of blood sample collection (days 0, 7 and day 7/day 0 ratio) using mixed generalized models for metabolite concentration. The most striking differences in metabolite concentrations were associated with the RO, both obtained by multivariate (OPLS-DA) and univariate (mixed generalized) analyses, mainly with metabolites measured on day 0. The metabolites consistently identified through the OPLS-DA with a higher variable importance in projection score, which allowed for discrimination between male fetus- and female fetus-carrying recipients, were hippuric acid, l-phenylalanine, and propionic acid. The concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male fetuses were carried, in particular when the RO acted as AOS. No pathways were significantly regulated according to the AOS. In contrast, six pathways were found enriched for calf sex in the day 0 dataset, three for day 7, and nine for day 7/day 0 ratio. However, when the AOS was the right, 20 pathways were regulated on day 0, 8 on day 7, and 13 within the day 7/day 0 ratio, most of which were related to amino acid metabolism, with phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism pathways being identified throughout. Our study shows that certain metabolites in the recipient plasma are influenced by the AOS and can predict the likelihood of carrying male or female embryos to term, suggesting that maternal metabolism prior to or at the time of ET could favor the implantation and/or development of either male or female embryos.


This study explored how the active ovary side (AOS, i.e., left or right) and the sex of the calf carried by the recipient relate to the plasma metabolome in blood. For this purpose, we analyzed blood samples from heifers at two specific times: the day of the estrus and the day of the embryo transfer. We found significant differences in the sex ratio of pregnancies carried in the right ovary, and in the levels of certain metabolites depending on whether the active ovary was on the right or left and whether the calf was male or female. As examples, the concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male calves were carried, in particular when the right ovary was active. Interestingly, the calf sex also influenced certain metabolic pathways, especially in the right AOS, several of them related to amino acid metabolism. However, no significant metabolic pathway changes were observed based solely on which ovary was active. Overall, the study suggests that the metabolism of the recipient, influenced by the AOS, might play a role in the successful implantation and development of embryos of a certain sex. This insight could potentially help to predict and improve pregnancy outcomes in cattle through embryo transfer techniques.


Subject(s)
Embryo Transfer , Hippurates , Ovary , Propionates , Male , Pregnancy , Cattle , Female , Animals , Pregnancy Rate , Embryo Transfer/veterinary , Metabolome , Phenylalanine
3.
Biochem Biophys Res Commun ; 710: 149879, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38579536

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with metabolic disorder and gut dysbiosis. Decreased abundance of hippuric acid (HA) was found in patients with IBD. HA, metabolized directly from benzoic acid in the intestine and indirectly from polyphenols, serves as a marker of polyphenol catabolism. While polyphenols and benzoic acid have been shown to alleviate intestinal inflammation, the role of HA in this context remains unknown. Herein, we investigated the effects and mechanism of HA on DSS-induced colitis mice. The results revealed that HA alleviated clinical activity and intestinal barrier damage, decreased pro-inflammatory cytokine production. Metagenomic sequencing suggested that HA treatment restored the gut microbiota, including an increase in beneficial gut bacteria such as Adlercreutzia, Eubacterium, Schaedlerella and Bifidobacterium_pseudolongum. Furthermore, we identified 113 candidate genes associated with IBD that are potentially under HA regulation through network pharmacological analyses. 10 hub genes including ALB, IL-6, HSP90AA1, and others were identified using PPI analysis and validated using molecular docking and mRNA expression analysis. Additionally, KEGG analysis suggested that the renin-angiotensin system (RAS), NF-κB signaling and Rap1 signaling pathways were important pathways in the response of HA to colitis. Thus, HA may provide novel biotherapy options for IBD.


Subject(s)
Colitis , Gastrointestinal Microbiome , Hippurates , Inflammatory Bowel Diseases , Humans , Animals , Mice , Dextran Sulfate , Molecular Docking Simulation , Colitis/chemically induced , Colitis/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Benzoic Acid , Disease Models, Animal , Mice, Inbred C57BL , Colon
4.
J Antimicrob Chemother ; 79(5): 1109-1117, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38635298

ABSTRACT

BACKGROUND: Despite a lack of conclusive evidence of effect, methenamine hippurate is widely prescribed as preventive treatment for recurrent urinary tract infections (UTIs) in Norway. A national discontinuation of methenamine hippurate treatment due to a 4-month drug shortage in 2019 presented an opportunity to evaluate its preventive effect on UTIs among regular users. OBJECTIVE: To estimate the impact of the methenamine hippurate drug shortage on prescription frequency of UTI antibiotics. METHODS: Data from The Norwegian Prescription Database was analysed using an interrupted time series design. The time series consisted of 56 time periods of 14 days. The model included two naturally occurring interruptions: (i) the methenamine hippurate drug shortage, and (ii) reintroduction of the drug. The study population were 18 345 women ≥50 years receiving ≥2 prescriptions of methenamine hippurate in the study period before the shortage. Main outcome measure was number of prescriptions of UTI antibiotics per 1000 methenamine hippurate users. Prescription rates of antibiotics for respiratory tract infections were analysed to assess external events affecting antibiotic prescribing patterns. RESULTS: We found a significant increase of 2.41 prescriptions per 1000 methenamine hippurate users per 14-day period during the drug shortage (95%CI 1.39, 3.43, P < 0.001), followed by a significant reduction of -2.64 prescriptions after reintroduction (95%CI -3.66, -1.63, P < 0.001). CONCLUSIONS: During the methenamine hippurate drug shortage, we found a significant increase in prescribing trend for UTI antibiotics followed by a significant decrease in prescribing trend after reintroduction. This change in trend seems to reflect a preventive effect of the drug on recurrent UTIs.


Subject(s)
Anti-Bacterial Agents , Hippurates , Interrupted Time Series Analysis , Methenamine , Methenamine/analogs & derivatives , Urinary Tract Infections , Humans , Urinary Tract Infections/drug therapy , Norway/epidemiology , Anti-Bacterial Agents/therapeutic use , Female , Hippurates/therapeutic use , Methenamine/therapeutic use , Middle Aged , Aged , Drug Prescriptions/statistics & numerical data , Practice Patterns, Physicians'/statistics & numerical data , Aged, 80 and over , Drug Utilization/statistics & numerical data
5.
BMJ Open ; 14(4): e074445, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684270

ABSTRACT

OBJECTIVES: To estimate the cost-effectiveness of methenamine hippurate compared with antibiotic prophylaxis in the management of recurrent urinary tract infections. DESIGN: Multicentre, open-label, randomised, non-inferiority trial. SETTING: Eight centres in the UK, recruiting from June 2016 to June 2018. PARTICIPANTS: Women aged ≥18 years with recurrent urinary tract infections, requiring prophylactic treatment. INTERVENTIONS: Women were randomised to receive once-daily antibiotic prophylaxis or twice-daily methenamine hippurate for 12 months. Treatment allocation was not masked and crossover between arms was allowed. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary economic outcome was the incremental cost per quality-adjusted life year (QALY) gained at 18 months. All costs were collected from a UK National Health Service perspective. QALYs were estimated based on responses to the EQ-5D-5L administered at baseline, 3, 6, 9, 12 and 18 months. Incremental costs and QALYs were estimated using an adjusted analysis which controlled for observed and unobserved characteristics. Stochastic sensitivity analysis was used to illustrate uncertainty on a cost-effectiveness plane and a cost-effectiveness acceptability curve. A sensitivity analysis, not specified in the protocol, considered the costs associated with antibiotic resistance. RESULTS: Data on 205 participants were included in the economic analysis. On average, methenamine hippurate was less costly (-£40; 95% CI: -684 to 603) and more effective (0.014 QALYs; 95% CI: -0.05 to 0.07) than antibiotic prophylaxis. Over the range of values considered for an additional QALY, the probability of methenamine hippurate being considered cost-effective ranged from 51% to 67%. CONCLUSIONS: On average, methenamine hippurate was less costly and more effective than antibiotic prophylaxis but these results are subject to uncertainty. Methenamine hippurate is more likely to be considered cost-effective when the benefits of reduced antibiotic use were included in the analysis. TRIAL REGISTRATION NUMBER: ISRCTN70219762.


Subject(s)
Antibiotic Prophylaxis , Cost-Benefit Analysis , Hippurates , Methenamine , Methenamine/analogs & derivatives , Quality-Adjusted Life Years , Urinary Tract Infections , Humans , Urinary Tract Infections/prevention & control , Urinary Tract Infections/economics , Urinary Tract Infections/drug therapy , Female , Middle Aged , Methenamine/therapeutic use , Methenamine/economics , Adult , Antibiotic Prophylaxis/economics , Antibiotic Prophylaxis/methods , Recurrence , United Kingdom , Anti-Bacterial Agents/economics , Anti-Bacterial Agents/therapeutic use , Aged
6.
Sci Rep ; 14(1): 9935, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688900

ABSTRACT

Occupational exposure to toluene is associated with health risks that require reliable monitoring methods. Hippuric acid (HA), a urinary metabolite of toluene, serves as a valuable biomarker for such exposure. Colorimetric methods for the quantitative determination of HA have gained prominence due to their simplicity, cost-effectiveness, and suitability for field application. In the present study, a simple colorimetric technique was optimized for the determination of HA in the urine sample, and compared with a usual HPLC technique. The central composite design (CCD) was applied to examine the effective parameters on the colorimetric determination of HA. The calibration curve for HA was established within the concentration range of 6 to 100 mg L-1 with R2 = 0.97. The detection limit (LOD) and quantification limit (LOQ) were determined to be 1.8 mg L-1 and 6 mg L-1 respectively. The relative standard deviation (RSD%) was less than 5%, and the recovery% (R%) was 90.5-100.1. The overall results showed good agreement between the colorimetric and HPLC results. There was a significant relationship between the results obtained from HPLC and colorimetric methods especially for higher concentration levels of HA (≥ 500 mg/g creatinine). In conclusion, our optimized colorimetric method is a simple, cost-effective, and rapid method for determination of HA in occupational exposure, which is comparable with the HPLC technique.


Subject(s)
Biomarkers , Colorimetry , Hippurates , Occupational Exposure , Toluene , Hippurates/urine , Colorimetry/methods , Chromatography, High Pressure Liquid/methods , Humans , Biomarkers/urine , Biomarkers/analysis , Toluene/analysis , Toluene/urine , Occupational Exposure/analysis , Limit of Detection
7.
Cell Host Microbe ; 32(3): 366-381.e9, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38412863

ABSTRACT

Hyperuricemia induces inflammatory arthritis and accelerates the progression of renal and cardiovascular diseases. Gut microbiota has been linked to the development of hyperuricemia through unclear mechanisms. Here, we show that the abundance and centrality of Alistipes indistinctus are depleted in subjects with hyperuricemia. Integrative metagenomic and metabolomic analysis identified hippuric acid as the key microbial effector that mediates the uric-acid-lowering effect of A. indistinctus. Mechanistically, A. indistinctus-derived hippuric acid enhances the binding of peroxisome-proliferator-activated receptor γ (PPARγ) to the promoter of ATP-binding cassette subfamily G member 2 (ABCG2), which in turn boosts intestinal urate excretion. To facilitate this enhanced excretion, hippuric acid also promotes ABCG2 localization to the brush border membranes in a PDZ-domain-containing 1 (PDZK1)-dependent manner. These findings indicate that A. indistinctus and hippuric acid promote intestinal urate excretion and offer insights into microbiota-host crosstalk in the maintenance of uric acid homeostasis.


Subject(s)
Bacteroidetes , Hippurates , Hyperuricemia , Humans , Hyperuricemia/metabolism , Uric Acid/metabolism , Intestines , ATP-Binding Cassette Transporters/metabolism
8.
Anal Chim Acta ; 1296: 342307, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38401927

ABSTRACT

Toluene, a volatile organic compound, may have adverse effects on the nervous and digestive system when inhaled over an extended period. The assessment of environmental toluene exposure can be effectively conducted by detecting hippuric acid (HA), a toluene metabolite. In this investigation, a molecularly imprinted electrochemical sensor was developed for HA detection, utilizing the synergistic effects of reduced graphene oxide (RGO) and a bimetallic organic skeleton known as CoNi-MOF. Initially, graphene oxide (GO) was synthesized using a modified Hummers' method, and RGO with better conductivity was achieved through reduction with ascorbic acid (AA). Subsequently, CoNi-MOF was introduced to enhance the material's electron transport capabilities further. The molecularly imprinted membrane was then prepared via electropolymerization to enable selective HA recognition. Under optimal conditions, the synthesized sensor exhibited accurate HA detection within a concentration range of 2-800 nM, with a detection limit of 0.97 nM. The sensor's selectivity was assessed using a selectivity coefficient, yielding an imprinting factor of 6.53. The method was successfully applied to the quantification of HA in urine, demonstrating a favorable recovery rate of 93.4%-103.9%. In conclusion, this study presents a practical platform for the detection of human metabolite detection.


Subject(s)
Conus Snail , Graphite , Hippurates , Molecular Imprinting , Nanocomposites , Animals , Humans , Limit of Detection , Molecular Imprinting/methods , Graphite/chemistry , Nanocomposites/chemistry , Toluene , Electrochemical Techniques/methods , Electrodes
9.
Blood Purif ; 53(4): 231-242, 2024.
Article in English | MEDLINE | ID: mdl-38262384

ABSTRACT

INTRODUCTION: When the kidneys or liver fail, toxic metabolites accumulate in the patient's blood, causing cardiovascular and neurotoxic complications and increased mortality. Conventional membrane-based extracorporeal blood purification procedures cannot remove these toxins efficiently. The aim of this in vitro study was to determine whether commercial hemoperfusion adsorbers are suitable for removing protein-bound retention solutes from human plasma and whole blood as well as to compare the removal to conventional hemodialysis. METHODS: For in vitro testing of the removal of protein-bound substances, whole blood and plasma were spiked with uremic retention solutes (homocysteine, hippuric acid, indoxyl sulfate, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid) and the toxins of liver failure (bilirubin, cholic acid, tryptophan, phenol). Subsequently, the protein binding of each retention solute was determined. The adsorption characteristics of the hemoperfusion adsorbers, Jafron HA and Biosky MG, both approved for the adsorption of protein-bound uremic retention solutes and Cytosorb, an adsorber recommended for adsorption of cytokines, were tested by incubating them in spiked whole blood or plasma for 1 h. Subsequently, the adsorption characteristics of the adsorbers were tested in a dynamic system. For this purpose, a 6-h in vitro hemoperfusion treatment was compared with an equally long in vitro hemodialysis treatment. RESULTS: Hippuric acid, homocysteine, indoxyl sulfate, and tryptophan were most effectively removed by hemodialysis. Bilirubin and cholic acid were removed best by hemoperfusion with Cytosorb. A treatment with Jafron HA and Biosky MG showed similar results for the adsorption of the tested retention solutes and were best for removing phenol. 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid could not be removed with any treatment method. DISCUSSION/CONCLUSION: A combination of hemodialysis with hemoperfusion seems promising to improve the removal of some toxic metabolites in extracorporeal therapies. However, some very strongly protein-bound metabolites cannot be removed adequately with the adsorbers tested.


Subject(s)
Hippurates , Toxins, Biological , Uremia , Humans , Uremic Toxins , Indican , Tryptophan/metabolism , Renal Dialysis/adverse effects , Protein Binding , Phenols , Bilirubin , Cholic Acid , Homocysteine/metabolism
10.
Brain Behav Immun ; 117: 242-254, 2024 03.
Article in English | MEDLINE | ID: mdl-38281671

ABSTRACT

Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.


Subject(s)
Gastrointestinal Microbiome , Hippurates , T-Lymphocytes , Animals , Mice , Corpus Striatum , Neurons , Compulsive Behavior
12.
Anal Biochem ; 680: 115303, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37689001

ABSTRACT

Hippuric acid is an abundant metabolite in human urine. Urinary hippuric acid levels change with toxic exposure to aromatic compounds, consumption of fruits and vegetables, cancers, chronic kidney disease, schizophrenia and Crohn's disease. While urinary hippuric acid can be detected and quantified via mass spectrometry or nuclear magnetic resonance spectroscopy, a colorimetric assay would be preferable for a low-cost, point-of care clinical assay. Two colorimetric methods, that use p-dimethylaminobenzaldehyde (DMAB) or benzenesulfonyl chloride (PhSO2Cl), respectively, have been previously developed to detect hippuric acid but these assays have many limitations. We replaced PhSO2Cl with p-toluenesulfonyl chloride (p-TsCl), to create a simpler, faster and more accurate method that works with human urine. This modified colorimetric assay detects from 60 µM to 1000 µM hippuric acid in urine in 2 min. We also corrected for the effects of interfering compounds present in urine such that the assay works across many urine backgrounds. We validated this improved assay on multiple hippurate-spiked urine samples, observing an excellent correlation (R2 > 0.94) between observed and known hippurate concentrations. These data suggest that this colorimetric assay is accurate and should greatly facilitate the measurement of hippuric acid in urine to detect a variety of human conditions.


Subject(s)
Body Fluids , Colorimetry , Humans , Biological Assay , Hippurates
13.
Mol Psychiatry ; 28(9): 3874-3887, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37495887

ABSTRACT

Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.


Subject(s)
Depression , Tandem Mass Spectrometry , Humans , Depression/metabolism , Diet , Metabolome/genetics , Vitamin A/metabolism , Hippurates , Metabolomics/methods
14.
Curr Opin Urol ; 33(6): 488-496, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37337660

ABSTRACT

PURPOSE OF REVIEW: Recurrent urinary tract infections (rUTIs) in women are prevalent and difficult to manage. The rise of antimicrobial resistance makes it prudent to re-investigate the role of nonantimicrobial agents in the prevention of RUTIs. We wanted to evaluate randomised controlled trials (RCTs) that employed methenamine hippurate as a therapy or prophylactic in adult women with rUTIs. RECENT FINDINGS: Relevant databases were searched for RCTs using Cochrane methodology and reporting items for systematic reviews and meta-analyses (PRISMA) checklist, comparing the efficacy of methenamine hippurate to either an antibiotic or a placebo for the prophylaxis of rUTI in women.Six trials involving 322 patients taking methenamine and 419 patients receiving antibiotics in total were evaluated. The duration of the trials ranged from 12-24 months. Studies reported that methenamine was effective in extending the mean period between symptomatic episodes of urinary tract infections (UTIs), keeping the patient symptom- and infection-free, and reducing the number of UTI episodes. The newer studies reported that methenamine reduced the incidence rates of recurrent UTIs and was not inferior to the antibiotic in this regard. SUMMARY: The outcomes of methenamine hippurate were found to be at par with the antibiotic prophylaxis. It might serve as a suitable alternative nonantibiotic prophylaxis for females with rUTIs.


Subject(s)
Methenamine , Urinary Tract Infections , Adult , Female , Humans , Methenamine/therapeutic use , Urinary Tract Infections/drug therapy , Urinary Tract Infections/epidemiology , Urinary Tract Infections/prevention & control , Hippurates/therapeutic use , Anti-Bacterial Agents/therapeutic use
15.
Br J Nurs ; 32(9): S6-S12, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37173081

ABSTRACT

The aim of this article is to share experience and learning of managing recurrent urinary tract infections (UTIs) within a specialist urology nurse-led team based at a district general hospital. It looks at current practice and supporting evidence for how to manage and treat recurrent UTIs in both male and female patients. Two case studies are presented to illustrate the management strategies and outcomes, demonstrating a planned approach that informs the design of a local management guideline to organise patients' care.


Subject(s)
Urinary Tract Infections , Urology , Humans , Male , Female , Methenamine , Nurse's Role , Hippurates
16.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901795

ABSTRACT

Previous studies showed that rats with long-term bile duct ligation have reduced coenzyme A stores per g of liver but maintained mitochondrial CoA stores. Based on these observations, we determined the CoA pool in the liver homogenate, liver mitochondria, and liver cytosol of rats with bile duct ligation for 4 weeks (BDL rats, n = 9) and sham-operated control rats (CON rats, n = 5). In addition, we tested the cytosolic and mitochondrial CoA pools by assessing the metabolism of sulfamethoxazole and benzoate in vivo and of palmitate in vitro. The hepatic total CoA content was lower in BDL than CON rats (mean ± SEM; 128 ± 5 vs. 210 ± 9 nmol/g), affecting all subfractions equally (free CoA (CoASH), short- and long-chain acyl-CoA). In BDL rats, the hepatic mitochondrial CoA pool was maintained, and the cytosolic pool was reduced (23.0 ± 0.9 vs. 84.6 ± 3.7 nmol/g liver; CoA subfractions were affected equally). The urinary excretion of hippurate after i.p. benzoate administration (measuring mitochondrial benzoate activation) was reduced in BDL rats (23.0 ± 0.9 vs. 48.6 ± 3.7% of dose/24 h), whereas the urinary elimination of N-acetylsulfamethoxazole after i.p. sulfamethoxazole administration (measuring the cytosolic acetyl-CoA pool) was maintained (36.6 ± 3.0 vs. 35.1 ± 2.5% of dose/24 h BDL vs. CON rats). Palmitate activation was impaired in the liver homogenate of BDL rats but the cytosolic CoASH concentration was not limiting. In conclusion, BDL rats have reduced hepatocellular cytosolic CoA stores, but this reduction does not limit sulfamethoxazole N-acetylation or palmitate activation. The hepatocellular mitochondrial CoA pool is maintained in BDL rats. Impaired hippurate formation in BDL rats is explained best by mitochondrial dysfunction.


Subject(s)
Cholestasis , Liver , Rats , Animals , Cytosol/metabolism , Rats, Sprague-Dawley , Liver/metabolism , Cholestasis/metabolism , Bile Ducts/metabolism , Mitochondria/metabolism , Benzoates , Hippurates/metabolism , Palmitates/metabolism , Ligation
17.
Nat Commun ; 14(1): 512, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36720857

ABSTRACT

The human gut microbiota produces dozens of small molecules that circulate in blood, accumulate to comparable levels as pharmaceutical drugs, and influence host physiology. Despite the importance of these metabolites to human health and disease, the origin of most microbially-produced molecules and their fate in the host remains largely unknown. Here, we uncover a host-microbe co-metabolic pathway for generation of hippuric acid, one of the most abundant organic acids in mammalian urine. Combining stable isotope tracing with bacterial and host genetics, we demonstrate reduction of phenylalanine to phenylpropionic acid by gut bacteria; the host re-oxidizes phenylpropionic acid involving medium-chain acyl-CoA dehydrogenase (MCAD). Generation of germ-free male and female MCAD-/- mice enabled gnotobiotic colonization combined with untargeted metabolomics to identify additional microbial metabolites processed by MCAD in host circulation. Our findings uncover a host-microbe pathway for the abundant, non-toxic phenylalanine metabolite hippurate and identify ß-oxidation via MCAD as a novel mechanism by which mammals metabolize microbiota-derived metabolites.


Subject(s)
Hippurates , Metabolomics , Animals , Female , Humans , Male , Mice , Acyl-CoA Dehydrogenase , Phenylalanine
18.
Inorg Chem ; 62(6): 2715-2725, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36706037

ABSTRACT

With the introduction of Eu3+ ions as the secondary fluorescent signal reporter and sensing active sites, a dual-emission ratiometric sensor of Eu3+@NiMOF (Eu3+ functional NiMOF) for hippuric acid (HA) detection in urine and serum was fabricated via the postsynthetic encapsulating strategy. Based on the two emission signals at 441 nm (turn-on) and 628 nm (turn-off), the produced Eu3+@NiMOF ratiometric sensor provided enhanced sensitivity, higher selectivity, and 9.7 times lower limits of detection (LOD) for the detection of HA (2.38 µM, 0.42 µg·mL-1) than that of the pristine NiMOF. Considering the high sensitivity and visualization results, further exploration of intelligent applications in the HA sensing process was carried out by constructing a tandem combinational logic gate to improve the practicability and convenience with the help of a smartphone. This work provides a promising approach for developing MOF-based ratiometric sensors to detect biomarkers.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Fluorescent Dyes/chemistry , Hippurates , Anti-Bacterial Agents
19.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499106

ABSTRACT

Previous research has indicated that various metabolites belonging to phenolic acids (PAs), produced by gut microflora through the breakdown of polyphenols, help in promoting bone development and protecting bone from degeneration. Results have also suggested that G-protein-coupled receptor 109A (GPR109A) functions as a receptor for those specific PAs such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA). Indeed, HA has a molecular structural similarity with nicotinic acid (niacin) which has been shown previously to bind to GPR109A receptor and to mediate antilipolytic effects; however, the binding pocket and the structural nature of the interaction remain to be recognized. In the present study, we employed a computational strategy to elucidate the molecular structural determinants of HA binding to GPR109A and GPR109B homology models in understanding the regulation of osteoclastogenesis. Based on the docking and molecular dynamics simulation studies, HA binds to GPR109A similarly to niacin. Specifically, the transmembrane helices 3, 4 and 6 (TMH3, TMH4 and TMH6) and Extracellular loop 1 and 2 (ECL1 and ECL2) residues of GRP109A; R111 (TMH3), K166 (TMH4), ECL2 residues; S178 and S179, and R251 (TMH6), and residues of GPR109B; Y87, Y86, S91 (ECL1) and C177 (ECL2) contribute for HA binding. Simulations and Molecular Mechanics Poisson-Boltzmann solvent accessible area (MM-PBSA) calculations reveal that HA has higher affinity for GPR109A than for GPR109B. Additionally, in silico mutation analysis of key residues have disrupted the binding and HA exited out from the GPR109A protein. Furthermore, measurements of time-resolved circular dichroism spectra revealed that there are no major conformational changes in the protein secondary structure on HA binding. Taken together, our findings suggest a mechanism of interaction of HA with both GPR109A and GPR109B receptors.


Subject(s)
Niacin , Receptors, Nicotinic , Niacin/metabolism , Receptors, Nicotinic/metabolism , Receptors, G-Protein-Coupled/metabolism , Hippurates , Spectrum Analysis
20.
Dalton Trans ; 51(39): 14924-14929, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36106946

ABSTRACT

Rapid and accurate determination of biomarkers of human poisoning in real urine is of great significance for the assessment of health status. Herein, a luminescent urea-functionalized metal-organic framework (MOF), {[Cd(L)0.5(bpbix)]·x(solv)}n (1) (H4L = 5,5'-(((naphthalene-1,5-diylbis(azanediyl))bis(carbonyl))bis(azanediyl))diisophthalic acid; bpbix = 4,4'-bis((1H-imidazol-1-yl)methyl)biphenyl), has been successfully synthesized, and exhibits good stability in aqueous solutions in the normal urinary pH range and real urine. Complex 1 can serve as a dual-responsive luminescent biosensor for the detection of diphenyl phosphate (DPP) and hippuric acid (HA) as biomarkers of flame retardant triphenyl phosphate and toluene poisoning, and shows the advantages of high sensitivity, rapid response, good anti-interference capability, and reversibility. More significantly, complex 1 is successfully applied to the sensitive and accurate detection of DPP and HA in real urine with satisfactory recoveries. This work presents a dual-responsive luminescent MOF-based biosensor for simple, rapid, accurate, and reversible determination of urinary DPP and HA, which has promising application potential for the diagnosis of diseases related to triphenyl phosphate and toluene poisoning.


Subject(s)
Biosensing Techniques , Flame Retardants , Metal-Organic Frameworks , Biomarkers , Biphenyl Compounds , Cadmium , Hippurates , Humans , Naphthalenes , Organophosphates , Phosphates , Toluene , Urea
SELECTION OF CITATIONS
SEARCH DETAIL
...